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 The New Hampshire Geological Survey proposed to develop a methodology to 

utilize high resolution topographic data to update existing mapped streams (hydrography) 

and map out additional streams to better reflect the number of streams actually present on 

the ground. High resolution digital elevation models (DEM) derived from airborne Light 

Detection and Ranging (LiDAR) data have recently been acquired for portions of New 

Hampshire. One dataset covers the Seacoast region of the state, which is characterized by 

high population growth (relative to the rest of the state) and low topographic relief.  

Additional data collection took place in the White Mountain National Forest, which is 

characterized by low population density, dense forest cover and high topographic relief 

(Figure 1).  A number of potential methods were tested before the BotHat method of Cho 

et al 2011 was ultimately selected. The resulting stream networks were then field 

checked.  

 

Figure 1. Study area 
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The National Hydrography Dataset (NHD) has been shown to under-represent the 

full extent of the stream network that is on the ground (Colson et al., 2008, Brooks and 

Colburn 2011). A number of motivations for accurately representing the ground condition 

of streams exist. Biological scientists are interested in potential habitat and nutrient 

cycling in these small headwater streams. Hydrologists are interested in these small 

headwater streams for the role that they play in flood routing. Road managers already 

know where these streams are located, because culverts are placed at existing crossings, 

but there has not been a systematic accounting of their occurrence or any determination 

on whether the culverts are appropriately sized for the associated streams. 

In order to assess the need for LiDAR updating, a comparison was made with  the 

existing NHD mapped streams. Based on the stated accuracy for the NHD, 95 percent of 

streams should fall within 40 feet of their true ground location. Following the methods of 

Poppenga et al 2013, a buffer of 40 feet was drawn on the NHD streams, and the 

headwater points of the NHD were used as initiation points that were traced downstream 

on the LiDAR DEM using standard D8 flow accumulation Geographic Information 

System (GIS) methods (Figure 2). In the seacoast area, 43 percent of NHD streams were 

found to be greater than 40ft from the corresponding LiDAR stream. In the White 

Mountain region, 23 percent of the NHD streams were outside of the specified range.  
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Figure 2. Results of buffer analysis. Orange lines show areas where the streams are 

outside of the 40ft buffer. 

 

Other state stewards of the NHD have updated their hydrography using a number 

of methods. For a detailed review of the use of high resolution topographic data see, 

Lopez-Torrijos 2013. The most basic method for updating involves the use of LiDAR 

DEMs or hillshades, in combination with high resolution aerial imagery to manually 

draw streams on-screen. Because of the large commitment of time required and the 

variability of editor interpretations, we chose not to use this method. The traditional flow-

accumulation method has also been implemented, based on the assumption of a relatively 

constant drainage area threshold for channel initiation. This method was dismissed due to 
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the fact that it often under- or over-estimates the headward extent of streams. While it is 

true that flow accumulation (or drainage area) is a major driver in the formation of stream 

channels, many other factors such as land cover, subsurface materials, and slope all 

contribute to variations around a mean drainage area initiation point. Other methods for 

the identification of streams utilize the actual surface expression of the stream channel. 

Curvature (the second derivative of elevation) is one geomorphometric property that has 

been used to identify stream channels and represents the driving factor in the GeoNET 

program by Passalaqua et al (2010). The original proposal for the current project cited 

this method as a promising candidate to be fully explored. However, experimentation 

revealed shortcomings in its performance, ranging from the limited size of the area that 

could be processed at one time to difficulties in properly connecting areas of high 

curvature. Therefore, the method was deemed to be inappropriate for our application.  

The method that was ultimately implemented for this project was the BotHat 

method of Cho et al. The BotHat is a type of morphological filter which is well 

established as an image processing technique to find local minima in an image (or in this 

case a DEM). A few initial test cases demonstrated that the method was able to accurately 

connect the features of interest. During the course of this project, the method outlined by 

Cho et al. was slightly modified, but the basic function of the BotHat remained the same. 

The original DEM is analyzed for the maximum value in a moving window of specified 

dimension (dilation). The minimum of this result then is taken (erosion). Lastly, the result 

of this operation is subtracted from the original DEM to yield the final BotHat image as 

given by equation 1:  

 

IeeIh  ))((          (Equation 1) 
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where h is the BotHat filtered image, I is the original image, e is the structuring element 

or analysis window, dilation is ° and erosion is • . The basic operation is shown 

graphically in figure 3 with a simplified DEM. 

A   B   C   D 

Figure 3. From left to right, the original DEM, dilation, closing and then BotHat image. 

 

A multi-scale approach was adopted to support detection of features that differed 

in size and extent.  This was accomplished by expanding the BotHat window (kernel) 

from 3x3 to 11x11. 

The basic outline of the method is as follows: (Figure 4) 

1. DEM was clipped by watershed (Hydrologic Unit Code [HUC] 12) and filtered using a 

low pass filter (Figure 4 A) to minimize noise in the elevation values 

2. BotHat was performed on a 3x3 window.  

3. Values exceeding a threshold equal to  1 standard deviation above the mean value for 

the BotHat image were identified and converted to 1’s. All other values were converted 

to 0’s to create a binary image. (Figure 4 B) 

4. BotHat was performed on an 11x11 window. 
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5. Values exceeding a threshold equal to 1 standard deviation above the mean value for 

the BotHat image were identified and converted to 1’s (as in Step 3). All other values 

were converted to 0’s to create a binary layer (Figure 4 C) 

6. The two binary images were intersected to identify all cells that exceeded the 

respective threshold for each kernel size and the results were converted to another binary 

image. (Figure 4 D) 

7. Contiguous 1-valued cells were identified as discrete groups and a statistical analysis 

of the population of resulting groups was performed to determine the mean size (number 

of cells) and standard deviation of all groups. A threshold was set at 2 times the standard 

deviation above the mean and all groups below the threshold were eliminated. The results 

were converted to a binary image.(Figure 4 E) 

8. Flow accumulation was performed and cells with values greater than 500 were 

converted to 1’s while all other cells were converted to 0’s. 

9. The binary image from Step 8 (threshold flow accumulation) was intersected with the 

binary image from Step 6 (threshold BotHat) to create a set of seed points from which to 

generate flow paths. 

10. Perform a weighted flow accumulation of this image to connect all of the seed points 

along individual flow paths, and then convert the results to a stream layer. (Figure 4 F) 
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Figure 4. Step-by-step process outlined in text, showing some of the intermediary data 

layers. 

 

Thresholds 

A number of steps in the work flow require the use of threshold values to refine 

the population of target cells for subsequent processing. Presumably those values should 

be optimized for differences in topographic relief and roughness inherent in filtered 

A 
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elevation datasets for different geographic areas (i.e., Seacoast region versus White 

Mountains) as wells as the scale of the target features. A goal of this project, however, 

was to develop a method that was as automated and free of subjectivity as possible.  

Although the results for any given area could potentially be refined through exhaustive 

trial-and-error testing of site-specific threshold values, such an approach was avoided in 

order to  make the entire work flow more efficient and reproducible. For this reason, 

thresholds were based on the statistical properties of the input images at different stages 

of the analysis (Step 3, Step 5, and Step 7), namely positive exceedance of the population 

mean by a multiple of the standard deviation.  The initial processing was done in the 

Seacoast region, and two different threshold values (1 standard deviation or 2 standard 

deviations above the mean) were chosen as a starting point. During initial exploration of 

the dataset, it was found that displaying the BotHat layer by 1 standard deviation did a 

good job of highlighting the channel/valley features, and so this approach was used as an 

initial starting point for thresholding the original BotHat layer.  

 The flow accumulation threshold of 500 cells (Step 8) was based on a cursory 

visual inspection of the dataset using 1 foot aerial imagery that seemed to indicate that 

this was a minimum amount a flow accumulation needed to initiate channel formation. A 

majority of streams initiated at higher thresholds, but the minimum threshold was chosen 

so as not to exclude the smallest of headwater streams. Even after filtering and overlaying 

the BotHat layers, some number of isolated false positive cells remained. The data 

exhibited a non-normal distribution, with a large number of small, isolated pixels and an 

increasingly diminishing number of large, connected pixels. The threshold on the 

grouping results (Step 7) was chosen to be consistent with the thresholding method of the 
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original BotHat layer. Two different thresholds were created, one at 1 standard deviation 

and one at 2 standard deviations, and then the results were checked for accuracy in the 

field. 

 

DEM resolutions 

Because of different specifications and timing of LiDAR data collection in the 

Seacoast region and the White Mountain, the resulting DEMs had different resolutions.  

The White Mountain dataset is a 1-meter ground surface dataset, as opposed to the 

Seacoast dataset which is a 2-meter dataset. In order to evaluate the potential effects 

caused by the different DEM resolutions, the methods developed in the Seacoast area 

were applied to the original White Mountain dataset and to a re-sampled 2-meter version 

of the dataset. Only the second, higher threshold developed in the Seacoast was applied 

here since it was found to produce more accurate results. Both extracted networks were 

then field checked. 

 

Run times 

Work was performed through python scripting in Python 2.7.5, utilizing ArcPy in 

ESRI 10.1, with a Windows 7 machine equipped with 4GB RAM and Intel Core2 Duo 

3.0 GHz processor. The run time for a given HUC 12 was between 31 minutes and 2 

hours 35 minutes with a mean time of 1 hour 10 minutes and a median time of 52 

minutes. 
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Field Work 

In the Seacoast region, the two threshold methods were used to extract two 

different networks and random points were created along these networks. In addition, a 

network was created based solely on a 500 cell flow accumulation threshold applied to 

the original DEM. This served to evaluate how much the accuracy of extraction results 

was improved by application of the BotHat method compared to flow accumulation 

alone. Each site was located using a handheld GPS and a photograph was taken. The site 

was scored on a scale of 0 to 4, as follows:  

0= No water 

1= Water in pools only 

2= Water present, no flow 

3= Interstitial flow 

4= Continuous flowing water 

A total of 80 sites were visited in the Seacoast region between December 2011 and 

January 2012. The White Mountain sites were located along the BotHat derived 1 meter 

and 2 meter DEM networks, but not along the flow accumulation only network. A total of 

37 sites were visited in the White Mountain area between August 2013 and October 15, 

2013. No significant rainfall was observed within the 7 days preceding field work.  

 

Permanence 

Although the project focused on the spatial distribution of the extracted streams, 

the temporal charcteristics of flow in these headwater streams was also of interest. A 

number of sensors were deployed in stream channels to log the presence/absence of 
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water, allowing time intervals when water is flowing to be measured. Nine sites were 

equipped with monitoring equipment as outline by Bhamjee and Lindsay (2011) and 

monitored between August 2013 and December 2013. The percentage of time that the 

sites were flowing ranged between 19 and 100, with a mean of 52 and a median of 

41percent. Although USGS standards do not tie permanence characteristics to hard and 

fast percentages (NHD feature catalog USGS 2009), these streams could be classified as 

either “ephemeral” (flowing for only part of the year only after rain storms or snowmelt), 

“intermittent” (flowing for only part of the year, but more than just after rainstorms and at 

snowmelt) or “perennial” (flowing all year unless under extreme drought conditions). 

Based on the results for this period of record, none of the streams monitored fit the 

definition for “ephemeral” (contains water only during or after a local rainstorm or heavy 

snowmelt). The results from sites A-03 and B-01 show the difficulty in using flow 

accumulation alone as a proxy for flow. A-03 and B-01 are located only 200m apart and 

have flow accumulations of 180,224 m
2
 and 172,220 m

2
, respectively. Despite these 

similarities, site A-03 was only flowing for 23 percent of the time while B-01 was 

flowing for 89 percent of the time. When percent of time flowing is plotted against 

upstream flow accumulation area of all the sites, the resulting scatter plot indicates no 

apparent correlation between the two variables (figure 5). Clearly, other first order 

controls, such as the water storage capacity of subsurface materials and the configuration 

of the underlying bedrock surface relative to the surface topography are drivers of stream 

permanence. 



 

 13 

DA/Permanence

y = 6E-07x + 0.4046

R2 = 0.0517
0

0.2

0.4

0.6

0.8

1

1.2

0 100000 200000 300000 400000 500000

DA (m2)

%
 t

im
e
 f

lo
w

in
g

Facc_m2

Linear (Facc_m2)

 

Figure 5. Lack of correlation between the percent of time a site is flowing and the 

drainage area. 

 

Hydro-enforcement 

Hydro-enforcement is the process of removing spurious pits and blockages that 

prevent the modeled flow of water from moving freely downslope across the DEM 

surface. The increased detail in high resolution DEMs derive from LiDAR data sources 

and the retention of road elevations at cells corresponding to stream crossings creates a 

blockage each time a stream goes through a culvert. After an initial run, it became 

apparent that there was a problem with blockages caused by roads and other 

anthropogenic features that affected the performance of the flow accumulation algorithm 

by creating unrealistic flow paths in the proximity of culverts and bridges. Hydro- 
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enforcement was implemented in an iterative manner. First the locations where the pre-

existing NHD intersected the road network were examined to determine if there was a 

blockage caused by the DEM. If it was, a line was drawn from the upstream to the 

downstream part of the blockage. These lines were then used for zonal statistics, in which 

the minimum value of the DEM was extracted to the entire line. The resulting grid was 

then mosaiced back to the original DEM, replacing the original DEM values with the 

minimum values. This modified DEM was then used to extract the higher resolution 

network. At this time, another intersection between the stream network and the road 

network was performed. Each intersection site was inspected to see if damming was 

occurring (evidenced by parallel flow lines and other straightening of the flowline or a 

shift in the flowline position so that it crossed at another location) and if the crossing was 

being forced to a different location due to the damming. Elevations were then adjusted in 

the same manner as above to re-enforce the DEM. A total of 478 crossings were 

identified in the Seacoast area, and a total of 114 crossings were identified in the White 

Mountain area. Although some effort was focused on attempting to implement an 

efficient version of the automated breaching algorithm outlined in Poppenga et al. 2010, a 

satisfactory implementation had not been achieved at the time of writing. Automation of 

the flow enforcement would be an ideal next step, as this represents one of the more 

labor-intensive steps in the process.  
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Pruning 

Inspection of the stream network revealed that there were some very short 

sections of extracted channel that resulted from the seed areas being wider than 1 pixel. 

In order to remove these spurious segments, the following process was implemented: 

1: To Node summarized as a table 

2: From Node summarized as a table 

3: A relation between the To Node codes and the From Node codes 

4: A relation between the From Node code and the stream reaches 

5: Switch of the selection 

6: Sort these selected features by length and delete the reaches that are less than 30.4 

meters.  

 

The length requirement was picked somewhat arbitrarily, but 30.4 meters (100ft) seemed 

to be the lower limit of a true reach. Inspection of the histogram of stream lengths 

indicated that this cutoff represented some kind of break point in lengths, but no formal 

analysis was performed. Overall, the percentage of total length pruned from the results 

was less than 2 percent of the total stream length (table 1). 

Table 1. Summary of length of features pruned. 

 

 

HUC12 010600030902 010600030903 0106000030904 010700010202 

Prune length 

(meters) 

6285 5052 4249 4988 

Total length 

(meters) 

303258 346869 287005 262575 

% pruned 2 1.4 1.5 1.9 
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Results  

The 28 Seacoast field-check sites (figure 6) that were predicted to be streams 

based on the final analysis using the 2 standard deviations threshold (in Steps 7) had an 

average score of 3.18. A score of 4 (Continuous flowing water) was recorded for 53.57 

percent of the sites, and only 7.14 percent scored 0 (No water). The 46 field-check sites 

on the network derived from the 1 standard deviation grouping threshold (Step 7) had an 

average score of 2.87. A score of 4 was recorded for 43.48 percent of the sites, while only 

10.87 percent scored a 0. However, if sites that were also predicted by the 2 standard 

deviation extraction are excluded so that the focus is only on the 18 headwater 1 standard 

deviation sites, the average score decreases to 2.33 (27.78 percent with scores of 4 and 

16.67 percent with score of 0). The random flow accumulation network that was used as 

a test for errors of omission had an average score of 1 (Water in pools only).  Of the 34 

sites, 2.94 percent were recorded with scores of 4  and 47.05 percent scored 0. In the 

preceding analysis, the presence of 0 scores represents an error of commission or a false 

positive, while sites with scores of 4 in lower threshold (1 standard deviation in Step 7) 

network represent errors of omission or false negatives in the higher threshold (2 standard 

deviations in Step 7) network.   

 In the White Mountain area, only the best performing thresholds from the 

Seacoast were used, and applied to a 1 meter native DEM and a 2 meter resampled DEM. 

With the native 1 meter DEM, the average score was 2.21, and 31.58 percent of the sites 

scored a 4 while 31.58 percent of sites scored a 0 (total of 19 sites). With the resampled 2 

meter DEM, the average score was 3.44, with 83.33 percent of sites scoring a 4 and 11.11 

percent of sites scoring a 0 (total of 18 sites).  
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Another means of calculating under-prediction, or errors of omission, is 

comparing the results of the extracted stream to reaches in the NHD. In the White 

Mountain area, all NHD reaches were represented at least in part by extracted streams. In 

the Seacoast region, 10 km worth of NHD streams, distributed between 13 reaches, were 

not represented by the extracted network. This is compared to 298 km total NHD length 

in the Seacoast region, distributed between 293 reaches. 

Drainage density is a measure of stream length per unit area, which is a useful 

way of comparing lengths of streams in different watersheds. The drainage density 

increased significantly for all HUCS. The original densities and the densities for some of 

the thresholds are provided in the table 2 below. 

 

HUC12 010600030902 010600030903 0106000030904  010700010202 
NHD 

drainage 

density 

(mi/mi
2
) 

2.06 2.06 1.86 NHD 

drainage 

density 

(mi/mi
2
) 

2.01 

1 SD 

drainage 

density 

(mi/mi
2
) 

8.67 9.03 8.66 1m grid 

DEM 

drainage 

density 

(mi/mi
2
) 

12.95 

2 SD 

drainage 

density 

(mi/mi
2
) 

6.15 6.36 6.17 2 m gird 

DEM 

drainage 

density 

(mi/mi
2
) 

5.89 

Table 2. Drainage densities (mi/mi2) for each study site. 

 

Discussion 

The perfect algorithm for identifying unmapped streams based on analysis of high 

resolution topographic data is extremely challenging to develop. If the threshold for 

detection is set too high, then some streams will be missed. If the threshold is set too low, 

then some features will erroneously be predicted as streams where no channels exist. The 
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advantage of the method outlined here is that it at least accommodates the possibility that 

drainage density varies spatially. By interrogating the terrain directly, it allows for stream 

detection and extraction process to be driven by topographic controls on the collection 

and transport of water and sediment. By comparison, methods based on flow 

accumulation alone will sometimes yield high values in non-channelized landscapes. 

 

 

Figure 6. Field photo of a detected stream (left) and the corresponding false color aerial 

image (top right) and DEM with BotHat layers (bottom right). 
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Problems 

Setting a hard threshold to define a stream versus a non-stream results in some 

cases of under- or over-prediction. Sequential adjustment of the threshold values enabled 

fine tuning of the balance between errors of commission and omission, but ideally an end 

result would reflect more of a probability of stream presence rather than a binary yes-no. 

There were some areas where the model did not perform as hoped. For one, the inclusion 

of roadside ditches and other anthropogenic stormwater features could be viewed as 

problematic. From another perspective, however, these features are important to consider 

in rainfall-runoff modeling because they convey water and potential contaminants more 

quickly during storm events. Another issue that could perhaps be resolved by the use of a 

different flow direction algorithm was that sometimes channelized reaches would enter a 

wetland area and then not exit, as the flow would enter into the groundwater system from 

this point on. However, because of the fill and spill nature of the flow algorithm, the 

channelized flow was forced to continue downstream. Other problem areas existed where 

channels sometimes developed in the flats, such as in channelized, drained wetlands. In 

this case, the channelized portion did not show up because there was no valley 

component that could be detected.  

 

Next Steps 

The ideal endpoint of this project would be to integrate the extracted higher 

resolution streams into the nationally distributed NHD. However, that effort should 

reasonably be deferred until complete LiDAR coverage is available for the state. In 

addition, the automated pruning and hydro-enforcement routines should be fully 
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automated to facilitate cost-effective and efficient production. The inclusion of a multi-

flow direction algorithm as opposed to the default 8-direction flow method that was used 

here could lead to more accurate horizontal positioning of the streams. 

 

Conclusions 

The BotHat morphological filter effectively highlights channelized features that 

are likely to represent natural stream channels but have not been previously mapped. 

Thresholds to determine what constitutes a stream can be modified as desired, but a 

threshold that tended to minimize errors of omission (false positives), was preferentially 

chosen.  
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